There are 8 questions with total 126 points in this exam.

1. Let $\left\{f_{n}\right\}$ be a sequence of functions with domain $D \subset \mathbb{R}^{p}$ and range in \mathbb{R}^{q}.
(a) (4 points) Define what it means to say that $\left\{f_{n}\right\}$ is pointwise convergent to f on D.
(b) (4 points) Define what it means to say that $\left\{f_{n}\right\}$ is uniformly convergent to f on D.
(c) (4 points) Define what it means to say that $\left\{f_{n}\right\}$ is Not uniformly convergent to f on D.
2. Let f be a function with domain $D \subset \mathbb{R}^{p}$ and range in \mathbb{R}^{q}.
(a) (4 points) Define what it means to say that f is a continuous function on D.
(b) (4 points) Define what it means to say that f is a uniformly continuous function on D.
(c) (4 points) Define what it means to say that f is a Lipschitz function on D..
3. (10 points) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$. For each $(x, y) \neq(0,0)$, show that there is an open neighborhood U of (x, y) such that f has a (local) C^{1} inverse defined on $f(U)$.

Solution: Since f is smooth and det $D f=\left|\begin{array}{rr}2 x & -2 y \\ 2 y & 2 x\end{array}\right|=4\left(x^{2}+y^{2}\right) \neq 0$ for each $(x, y) \neq(0,0)$, there is an open neighborhood U of (x, y) on which f has a (local) C^{1} inverse defined on $f(U)$ by the Inverse Function Theorem.
4. (10 points) In the system

$$
\begin{array}{r}
3 x+2 y+z^{2}+u+v^{2}=0 \\
4 x+3 y+z+u^{2}+v+w+2=0 \\
x+z+w+u^{2}+2=0
\end{array}
$$

discuss the solvability for u, v, w in terms of x, y, z near the point $(x, y, z, u, v, w)=(0,0,0,0,0,-2)$.
Solution: Let $F(x, y, z, u, v, w)=\left(3 x+2 y+z^{2}+u+v^{2}, 4 x+3 y+z+u^{2}+v+w+2, x+z+w+u^{2}+2\right)$.
Direct computation gives that $\left.D F\right|_{(0,0,0,0,0,-2)}=\left[\begin{array}{cccccc}3 & 2 & 2 z & 1 & 2 v & 0 \\ 4 & 3 & 1 & 2 u & 1 & 1 \\ 1 & 0 & 1 & 2 u & 0 & 1\end{array}\right]_{(0,0,0,0,0,-2)}=\left[\begin{array}{cccccc}3 & 2 & 0 & 1 & 0 & 0 \\ 4 & 3 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$. Since $\left.\operatorname{det} D F\right|_{(u, v, w)=(0,0,-2)}=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right|=1 \neq 0$, one can solve for u, v, w in terms of x, y, z near the point $(x, y, z, u, v, w)=(0,0,0,0,0,-2)$ by the Implicit Function Theorem.
5. (10 points) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $f(x, y)=\left(x+y^{3}, x y, y+y^{2}\right)$. Is the range of f a two-dimensional surface or a one-dimensional curve near $(0,0)$?

Solution: Since $\left.D F\right|_{(0,0)}=\left[\begin{array}{cc}1 & 3 y^{2} \\ y & x \\ 0 & 1+2 y\end{array}\right]_{(0,0)}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right]$ has rank 2, the range a smooth surface near $(0,0)$.
6. Let $f: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ be defined by $f\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)=\left(2 e^{x_{1}}+x_{2} y_{1}-4 y_{2}+3, x_{2} \cos x_{1}-6 x_{1}+2 y_{1}-y_{3}\right)$ so that $f(0,1,3,2,7)=(0,0)$ and $D f(0,1,3,2,7)=\left(\begin{array}{rrrrr}2 & 3 & 1 & -4 & 0 \\ -6 & 1 & 2 & 0 & -1\end{array}\right)$.
(a) (8 points) Show that we can solve for $\left(x_{1}, x_{2}\right)=g\left(y_{1}, y_{2}, y_{3}\right)$ i.e. solve for x_{1}, x_{2} in terms of y_{1}, y_{2}, y_{3}, near $\left(y_{1}, y_{2}, y_{3}\right)=(3,2,7)$.

Solution: Since det $\left.D_{x} f\right|_{\left(x_{1}, x_{2}\right)=(0,1)}=\left|\begin{array}{rr}2 & 3 \\ -6 & 1\end{array}\right|=20 \neq 0$, one can solve for x_{1}, x_{2} in terms of y_{1}, y_{2}, y_{3}, i.e. there exists a C^{1} function g such that $\left(x_{1}, x_{2}\right)=g(y)=g\left(y_{1}, y_{2}, y_{3}\right)$, for those $\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)$ satisfying that $f\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)=(0,0)$ near $\left(y_{1}, y_{2}, y_{3}\right)=(3,2,7)$ by the Implicit Function Theorem.
(b) (10 points) Show that $D g(3,2,7)=-\frac{1}{20}\left(\begin{array}{cc}1 & -3 \\ 6 & 2\end{array}\right)\left(\begin{array}{ccc}1 & -4 & 0 \\ 2 & 0 & -1\end{array}\right)$.

Solution: Part (a) implies that $f\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)=f(g(y), y)$ near $\left(y_{1}, y_{2}, y_{3}\right)=(3,2,7)$. Using chain rule and differentiating $f(x, y)=f(g(y), y)$ with respect to y_{i}, for $i=1,2,3$, we obtain that
$f_{i, x_{1}} \frac{\partial g_{1}}{\partial y_{j}}+f_{i, x_{2}} \frac{\partial g_{2}}{\partial y_{j}}+\frac{\partial f_{i}}{\partial y_{j}}=0$ for $i=1,2$ and $j=1,2,3$.
$\Leftrightarrow\left[\begin{array}{ll}f_{i, x_{1}} & f_{i, x_{2}}\end{array}\right]\left[\begin{array}{lll}\frac{\partial g_{1}}{\partial y_{1}} & \frac{\partial g_{1}}{\partial y_{2}} & \frac{\partial g_{1}}{\partial y_{3}} \\ \frac{\partial g_{2}}{\partial y_{1}} & \frac{\partial g_{2}}{\partial y_{2}} & \frac{\partial g_{2}}{\partial y_{3}}\end{array}\right]+\left[\begin{array}{lll}\frac{\partial f_{i}}{\partial y_{1}} & \frac{\partial f_{i}}{\partial y_{2}} & \frac{\partial f_{i}}{\partial y_{3}}\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ for $i=1,2$.
$\Leftrightarrow\left[\begin{array}{ll}f_{1, x_{1}} & f_{1, x_{2}} \\ f_{2, x_{1}} & f_{2, x_{2}}\end{array}\right]\left[\begin{array}{lll}\frac{\partial g_{1}}{\partial y_{1}} & \frac{\partial g_{1}}{\partial y_{2}} & \frac{\partial g_{1}}{\partial y_{3}} \\ \frac{\partial g_{2}}{\partial y_{1}} & \frac{\partial g_{2}}{\partial y_{2}} & \frac{\partial g_{2}}{\partial y_{3}}\end{array}\right]+\left[\begin{array}{lll}\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} & \frac{\partial f_{1}}{\partial y_{3}} \\ \frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}} & \frac{\partial f_{2}}{\partial y_{3}}\end{array}\right]=0$
$\Leftrightarrow D g=\left[\begin{array}{lll}\frac{\partial g_{1}}{\partial y_{1}} & \frac{\partial g_{1}}{\partial y_{2}} & \frac{\partial g_{1}}{\partial y_{3}} \\ \frac{\partial g_{2}}{\partial y_{1}} & \frac{\partial g_{2}}{\partial y_{2}} & \frac{\partial g_{2}}{\partial y_{3}}\end{array}\right]=-\left[\begin{array}{ll}f_{1, x_{1}} & f_{1, x_{2}} \\ f_{2, x_{1}} & f_{2, x_{2}}\end{array}\right]^{-1}\left[\begin{array}{lll}\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} & \frac{\partial f_{1}}{\partial y_{3}} \\ \frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}} & \frac{\partial f_{2}}{\partial y_{3}}\end{array}\right]$.
Evaluating at ($0,1,3,2,7$), we obtain
$D g(3,2,7)=-\left[\begin{array}{rr}2 & 3 \\ -6 & 1\end{array}\right]^{-1}\left[\begin{array}{rrr}1 & -4 & 0 \\ 2 & 0 & -1\end{array}\right]=-\frac{1}{20}\left[\begin{array}{rr}1 & -3 \\ 6 & 2\end{array}\right]\left[\begin{array}{rrr}1 & -4 & 0 \\ 2 & 0 & -1\end{array}\right]$.
7. (a) (8 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{1}{1+x^{2}}$. Prove that f is uniformly continuous on \mathbb{R}.
[Hint: You may use the Mean Value Theorem and the inequality $\frac{2 a b}{a^{2}+b^{2}} \leq 1$ when $a^{2}+b^{2} \neq 0$.]
Solution: For each $x, y \in \mathbb{R}$, by the Mean Value Theorem, $|f(x)-f(y)|=\left|f^{\prime}(z)(x-y)\right|=$ $\left|\frac{2 z}{\left(1+z^{2}\right)^{2}}\right||x-y|$ holds for some z lying between x and y. Using the inequality $\frac{2 a b}{a^{2}+b^{2}} \leq 1$ when $a^{2}+b^{2} \neq 0$, we have $|f(x)-f(y)| \leq \frac{1}{1+z^{2}}|x-y| \leq|x-y|$ for each $x, y \in \mathbb{R}$. Hence, f is uniformly continuous on \mathbb{R} since it is Lipschitz there.
(b) (8 points) Let $g(x)=\tan x$ for $x \in\left[0, \frac{\pi}{2}\right)$. Prove that g is Not Lipschitz on $\left[0, \frac{\pi}{2}\right.$).

Solution: For each $x, y \in\left[0, \frac{\pi}{2}\right)$, by the Mean Value Theorem, $|\tan x-\tan y|=\sec ^{2} z|x-y|$ holds for some z lying between x and y. Since $\lim _{x, y \rightarrow(\pi / 2)^{-}} \sec ^{2} z=\lim _{z \rightarrow(\pi / 2)^{-}} \sec ^{2} z=\infty, g$ is not Lipschitz on $\left[0, \frac{\pi}{2}\right)$.
(c) (8 points) Let $f(x)=\frac{1}{2}\left(x+\frac{2}{x}\right)$ for $x \in S=[1, \infty)$. Prove that f is a contraction mapping of S, and find the fixed point of f.

Solution: The Mean Value Theorem implies that $|f(x)-f(y)|=\left|f^{\prime}(z)(x-y)\right|$ holds for some z lying between $x, y \in[1, \infty)$. Since $\left|f^{\prime}(z)\right|=\left|\frac{1}{2}-\frac{1}{x^{2}}\right| \leq \frac{1}{2}<1$, we obtain that $|f(x)-f(y)| \leq \frac{1}{2}|x-y|$ holds for all $x, y \in[1, \infty)$ which implies that f is a contraction mapping of S.
A point $x \in S$ is a fixed point of f if $f(x)=x \Leftrightarrow x^{2}=2, x \in S \Leftrightarrow x=\sqrt{2}$.
8. Let $\left\{f_{n}\right\}$ be a sequence of functions defined by $f_{n}(x)=\frac{n x}{1+n x^{2}}$ for each $x \in[0,1]$.
(a) (6 points) Find the limit $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for each $x \in[0,1]$. [Hint: $x \in[0,1]=\{0\} \cup(0,1]$.]

Solution: $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)= \begin{cases}0 & \text { if } x=0, \\ \frac{1}{x} & \text { if } x \in(0,1] .\end{cases}$
(b) (6 points) Show that the convergence in Not uniform on $[0,1]$.

Solution: Since f is not continuous at $x=0$ the convergence is not uniform on $[0,1]$.
9. Let $\left\{f_{n}\right\}$ be a sequence of functions defined by $f_{n}(x)=\sqrt{n} x^{n}(1-x)$ for each $x \in[0,1]$.
(a) (6 points)Find $\max _{x \in[0,1]} f_{n}(x)$.

Solution: Since $f_{n}^{\prime}(x)=n \sqrt{n} x^{n-1}(1-x)-\sqrt{n} x^{n}=\sqrt{n} x^{n-1}[n-(n+1) x]=0$ when $x=\frac{n}{n+1}$, we obtain that $\max _{x \in[0,1]} f_{n}(x)=f_{n}\left(\frac{n}{n+1}\right)=\sqrt{n}\left(\frac{n}{n+1}\right)^{n}\left(1-\frac{n}{n+1}\right)=\frac{\sqrt{n}}{n+1}\left(1-\frac{1}{n+1}\right)^{n}$.
(b) (6 points) Find the limit $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for each $x \in[0,1]$. [Hint: $x \in[0,1]=(0,1) \cup\{0,1\}$.]

Solution: $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)= \begin{cases}0 & \text { if } x \in\{0,1\} \\ 0 & \text { if } x \in(0,1) .\end{cases}$
$=0$ for each $x \in[0,1]$.
(c) (6 points) Show that the convergence is uniform on $[0,1]$.

Solution: For each $x \in[0,1]$, since $\left|f_{n}(x)-f(x)\right|=\left|f_{n}(x)\right| \leq f_{n}\left(\frac{n}{n+1}\right)=\frac{\sqrt{n}}{n+1}\left(1-\frac{1}{n+1}\right)^{n}=$ $\frac{\sqrt{n}}{n+1}\left(1-\frac{1}{n+1}\right)^{n+1}\left(1-\frac{1}{n+1}\right)^{-1} \rightarrow 0$, the convergence is uniform on $[0,1]$.
10. Let f, g be uniformly continuous maps defined on $D \subset \mathbb{R}^{p}$ with ranges in \mathbb{R}^{q}.
(a) Prove that $f+g$ is uniformly continuous on D.

Solution: For each $\epsilon>0$ since f, g are uniformly continuous on D, there exists a $\delta>0$ such that if $x, y \in D$ and $\|x-y\|<\delta$ then $\|f(x)-f(y)\|<\epsilon$ and $\|g(x)-g(y)\|<\epsilon$
$\Rightarrow\|(f+g)(x)-(f+g)(y)\|=\|f(x)-f(y)+g(x)-g(y)\| \leq\|f(x)-f(y)\|+\|g(x)-g(y)\|<2 \epsilon$.
Hence, that $f+g$ is uniformly continuous on D.
(b) If f and g are bounded on D (by M). Prove that the product $f g$ is uniformly continuous on D.

Solution: Assume that $\|f(x)\|,\|g(x)\| \leq M$ for each $x \in D$.
Given $\epsilon>0$ since f, g are uniformly continuous on D, there exists a $\delta>0$ such that if $x, y \in D$ and $\|x-y\|<\delta$ then $\|f(x)-f(y)\|<\epsilon$ and $\|g(x)-g(y)\|<\epsilon$
$\Rightarrow\|(f g)(x)-(f g)(y)\|=\|f(x) g(x)-f(y) g(x)+f(y) g(x)-f(y) g(y)\| \leq\|f(x)-f(y)\|\|g(x)\|+$ $\|f(y)\|\|g(x)-g(y)\|<2 M \epsilon$.
Hence, that $f g$ is uniformly continuous on D.

