
Advanced Calculus Midterm Exam II May 18, 2011

There are 8 questions with total 126 points in this exam.

1. Let {fn} be a sequence of functions with domain D ⊂ Rp and range in Rq.

(a) (4 points) Define what it means to say that {fn} is pointwise convergent to f on D.

(b) (4 points) Define what it means to say that {fn} is uniformly convergent to f on D.

(c) (4 points) Define what it means to say that {fn} is Not uniformly convergent to f on D.

2. Let f be a function with domain D ⊂ Rp and range in Rq.

(a) (4 points) Define what it means to say that f is a continuous function on D.

(b) (4 points) Define what it means to say that f is a uniformly continuous function on D.

(c) (4 points) Define what it means to say that f is a Lipschitz function on D..

3. (10 points) Let f : R2 → R2 be defined by f(x, y) = (x2− y2, 2xy). For each (x, y) 6= (0, 0), show that there
is an open neighborhood U of (x, y) such that f has a (local) C1 inverse defined on f(U).

Solution: Since f is smooth and det Df =

∣∣∣∣
2x −2y
2y 2x

∣∣∣∣ = 4(x2 + y2) 6= 0 for each (x, y) 6= (0, 0), there is an

open neighborhood U of (x, y) on which f has a (local) C1 inverse defined on f(U) by the Inverse Function
Theorem.

4. (10 points) In the system

3x + 2y + z2 + u + v2 = 0

4x + 3y + z + u2 + v + w + 2 = 0

x + z + w + u2 + 2 = 0,

discuss the solvability for u, v, w in terms of x, y, z near the point (x, y, z, u, v, w) = (0, 0, 0, 0, 0,−2).

Solution: Let F (x, y, z, u, v, w) = (3x+2y +z2 +u+v2 , 4x+3y +z +u2 +v +w+2 , x+z +w+u2 +2).

Direct computation gives that DF |(0,0,0,0,0,−2) =




3 2 2z 1 2v 0
4 3 1 2u 1 1
1 0 1 2u 0 1




(0,0,0,0,0,−2)

=




3 2 0 1 0 0
4 3 1 0 1 1
1 0 1 0 0 1


 .

Since det DF |(u,v,w)=(0,0,−2) =

∣∣∣∣∣∣

1 0 0
0 1 1
0 0 1

∣∣∣∣∣∣
= 1 6= 0, one can solve for u, v, w in terms of x, y, z near the point

(x, y, z, u, v, w) = (0, 0, 0, 0, 0,−2) by the Implicit Function Theorem.

5. (10 points) Let f : R2 → R3 be defined by f(x, y) = (x+ y3, xy, y + y2). Is the range of f a two-dimensional
surface or a one-dimensional curve near (0, 0)?

Solution: SinceDF |(0,0) =




1 3y2

y x
0 1 + 2y




(0,0)

=




1 0
0 0
0 1


 has rank 2, the range a smooth surface near (0, 0).

6. Let f : R5 → R2 be defined by f(x1, x2, y1, y2, y3) = (2ex1 + x2y1 − 4y2 + 3 , x2 cos x1 − 6x1 + 2y1 − y3) so

that f(0, 1, 3, 2, 7) = (0, 0) and Df(0, 1, 3, 2, 7) =

(
2 3 1 −4 0
−6 1 2 0 −1

)
.
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(a) (8 points) Show that we can solve for (x1, x2) = g(y1, y2, y3) i.e. solve for x1, x2 in terms of y1, y2, y3,
near (y1, y2, y3) = (3, 2, 7).

Solution: Since det Dxf |(x1,x2)=(0,1) =

∣∣∣∣
2 3
−6 1

∣∣∣∣ = 20 6= 0, one can solve for x1, x2 in terms of y1, y2, y3,

i.e. there exists a C1 function g such that (x1, x2) = g(y) = g(y1, y2, y3), for those (x1, x2, y1, y2, y3)
satisfying that f(x1, x2, y1, y2, y3) = (0, 0) near (y1, y2, y3) = (3, 2, 7) by the Implicit Function Theorem.

(b) (10 points) Show that Dg(3, 2, 7) = − 1

20

(
1 −3
6 2

) (
1 −4 0
2 0 −1

)
.

Solution: Part (a) implies that f(x1, x2, y1, y2, y3) = f(g(y), y) near (y1, y2, y3) = (3, 2, 7). Using chain
rule and differentiating f(x, y) = f(g(y), y) with respect to yi, for i = 1, 2, 3, we obtain that

fi,x1

∂g1

∂yj

+ fi,x2

∂g2

∂yj

+
∂fi

∂yj

= 0 for i = 1, 2 and j = 1, 2, 3.

⇔ [
fi,x1 fi,x2

]



∂g1

∂y1

∂g1

∂y2

∂g1

∂y3
∂g2

∂y1

∂g2

∂y2

∂g2

∂y3


 +

[
∂fi

∂y1

∂fi

∂y2

∂fi

∂y3

]
=

[
0 0 0

]
for i = 1, 2.

⇔
[
f1,x1 f1,x2

f2,x1 f2,x2

]



∂g1

∂y1

∂g1

∂y2

∂g1

∂y3
∂g2

∂y1

∂g2

∂y2

∂g2

∂y3


 +




∂f1

∂y1

∂f1

∂y2

∂f1

∂y3
∂f2

∂y1

∂f2

∂y2

∂f2

∂y3


 = 0

⇔ Dg =




∂g1

∂y1

∂g1

∂y2

∂g1

∂y3
∂g2

∂y1

∂g2

∂y2

∂g2

∂y3


 = −

[
f1,x1 f1,x2

f2,x1 f2,x2

]−1




∂f1

∂y1

∂f1

∂y2

∂f1

∂y3
∂f2

∂y1

∂f2

∂y2

∂f2

∂y3


 .

Evaluating at (0, 1, 3, 2, 7), we obtain

Dg(3, 2, 7) = −
[

2 3
−6 1

]−1 [
1 −4 0
2 0 −1

]
= − 1

20

[
1 −3
6 2

] [
1 −4 0
2 0 −1

]
.

7. (a) (8 points) Let f : R→ R be defined by f(x) =
1

1 + x2
. Prove that f is uniformly continuous on R.

[Hint: You may use the Mean Value Theorem and the inequality
2ab

a2 + b2
≤ 1 when a2 + b2 6= 0.]

Solution: For each x, y ∈ R, by the Mean Value Theorem, |f(x) − f(y)| = |f ′(z)(x − y)| =

| 2z

(1 + z2)2
||x − y| holds for some z lying between x and y. Using the inequality

2ab

a2 + b2
≤ 1 when

a2 + b2 6= 0, we have |f(x)− f(y)| ≤ 1

1 + z2
|x− y| ≤ |x− y| for each x, y ∈ R. Hence, f is uniformly

continuous on R since it is Lipschitz there.

(b) (8 points) Let g(x) = tan x for x ∈ [0,
π

2
). Prove that g is Not Lipschitz on [0,

π

2
).

Solution: For each x, y ∈ [0,
π

2
), by the Mean Value Theorem, | tan x − tan y| = sec2 z|x − y| holds

for some z lying between x and y. Since lim
x,y→(π/2)−

sec2 z = lim
z→(π/2)−

sec2 z = ∞, g is not Lipschitz on

[0,
π

2
).

(c) (8 points) Let f(x) =
1

2

(
x +

2

x

)
for x ∈ S = [1,∞). Prove that f is a contraction mapping of S, and

find the fixed point of f .
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Solution: The Mean Value Theorem implies that |f(x) − f(y)| = |f ′(z)(x − y)| holds for some z

lying between x, y ∈ [1,∞). Since |f ′(z)| = |1
2
− 1

x2
| ≤ 1

2
< 1, we obtain that |f(x)− f(y)| ≤ 1

2
|x− y|

holds for all x, y ∈ [1,∞) which implies that f is a contraction mapping of S.
A point x ∈ S is a fixed point of f if f(x) = x ⇔ x2 = 2, x ∈ S ⇔ x =

√
2.

8. Let {fn} be a sequence of functions defined by fn(x) =
nx

1 + nx2
for each x ∈ [0, 1].

(a) (6 points) Find the limit f(x) = lim
n→∞

fn(x) for each x ∈ [0, 1]. [Hint: x ∈ [0, 1] = {0} ∪ (0, 1].]

Solution: f(x) = lim
n→∞

fn(x) =





0 if x = 0,
1

x
if x ∈ (0, 1].

(b) (6 points) Show that the convergence in Not uniform on [0, 1].

Solution: Since f is not continuous at x = 0 the convergence is not uniform on [0, 1].

9. Let {fn} be a sequence of functions defined by fn(x) =
√

nxn(1− x) for each x ∈ [0, 1].

(a) (6 points)Find max
x∈[0,1]

fn(x).

Solution: Since f ′n(x) = n
√

nxn−1 (1 − x) −√nxn =
√

nxn−1
[
n − (n + 1)x

]
= 0 when x =

n

n + 1
,

we obtain that max
x∈[0,1]

fn(x) = fn(
n

n + 1
) =

√
n

( n

n + 1

)n(
1− n

n + 1

)
=

√
n

n + 1

(
1− 1

n + 1

)n
.

(b) (6 points) Find the limit f(x) = lim
n→∞

fn(x) for each x ∈ [0, 1]. [Hint: x ∈ [0, 1] = (0, 1) ∪ {0, 1}. ]

Solution: f(x) = lim
n→∞

fn(x) =

{
0 if x ∈ {0, 1}
0 if x ∈ (0, 1).

= 0 for each x ∈ [0, 1].

(c) (6 points) Show that the convergence is uniform on [0, 1].

Solution: For each x ∈ [0, 1], since |fn(x) − f(x)| = |fn(x)| ≤ fn(
n

n + 1
) =

√
n

n + 1

(
1 − 1

n + 1

)n
=

√
n

n + 1

(
1− 1

n + 1

)n+1(
1− 1

n + 1

)−1 → 0, the convergence is uniform on [0, 1].

10. Let f, g be uniformly continuous maps defined on D ⊂ Rp with ranges in Rq.

(a) Prove that f + g is uniformly continuous on D.

Solution: For each ε > 0 since f, g are uniformly continuous on D, there exists a δ > 0 such that if
x, y ∈ D and ‖x− y‖ < δ then ‖f(x)− f(y)‖ < ε and ‖g(x)− g(y)‖ < ε
⇒ ‖(f + g)(x)− (f + g)(y)‖ = ‖f(x)− f(y) + g(x)− g(y)‖ ≤ ‖f(x)− f(y)‖+ ‖g(x)− g(y)‖ < 2ε.
Hence, that f + g is uniformly continuous on D.

(b) If f and g are bounded on D (by M). Prove that the product fg is uniformly continuous on D.

Solution: Assume that ‖f(x)‖, ‖g(x)‖ ≤ M for each x ∈ D.
Given ε > 0 since f, g are uniformly continuous on D, there exists a δ > 0 such that if x, y ∈ D and
‖x− y‖ < δ then ‖f(x)− f(y)‖ < ε and ‖g(x)− g(y)‖ < ε
⇒ ‖(fg)(x) − (fg)(y)‖ = ‖f(x)g(x) − f(y)g(x) + f(y)g(x) − f(y)g(y)‖ ≤ ‖f(x) − f(y)‖‖g(x)‖ +
‖f(y)‖‖g(x)− g(y)‖ < 2Mε.
Hence, that fg is uniformly continuous on D.
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